PFC 6.0 is now available. This new version provides major enhancements for modeling capabilities, software interoperability, and updated graphics.
Convex Rigid Blocks
You can now model convex rigid polygons (2D) and polyhedra (3D). This allows modeling of non-spherical objects when the shape is of importance (granular or cohesive systems) without requiring clumps. Contact detection and resolution use a variation of the GJK (Gilbert–Johnson–Keerthi) algorithm with only one contact between two objects (i.e., no sub-contacts) to maximize efficiency. Interactions between rigid blocks and between other PFC components, such as balls, clumps, or walls, are possible using regular contact models. Similar to balls and clumps (PFC) and blocks (UDEC/3DEC), a fully dynamic solution scheme is employed.
Convex rigid block utilities include:
Easy shape creation
Shape import shape from CAD data
Automatic computation of convex shape from a set of vertices
Replication or generation of multiple blocks from templates (similar to clumps)
Cutting existing blocks into smaller ones (stochastically or deterministically)
Filtering blocks by aspect ratio or relative volume during cutting to remove slivers
Merging blocks
Rounding edges and corners to reduce the number of active contacts
The following rigid block examples show contours of block velocity for a bin flow example (left) and cylindrical blocks undergoing mixing through shaking (right).
The next illustration is based on a 3DEC model that demonstres the effectiveness of flying buttresses in a supporting a thin-walled arch. The structure is simulated as a collection of rigid blocks and the deformation under gravity loading is observed. The model is run with (left) and without (right) buttresses to examine their effect.
Bonded Block Models (BBM)
In addition to granular and cohesive systems, now it is easy to create bonded block models (BBM) similar to UDEC and 3DEC. For example, the following compares a PFC2D BBM (left) with a conventional PFC2D bonded particle model (BPM) undergoing a simulated unconfined, uniaxial compression test. The two model plots indicate sample damage and fragmentation. An xy chart of Axial Stress vs. Axial Strain is shown below the two model samples.
FLAC3D Integration into PFC3D
With the release of FLAC3D 6, users were able to model zones and particles together for the first time. With PFC3D 6, Itasca has expanded these capabilities. Now you can work with discrete particles, clumps, and walls with finite-difference zones, interfaces, and structural elements all in one program. Imagine the possibilities! With PFC3D 6, and a valid FLAC3D 6 (or later) license, you can now load FLAC3D elements into the PFC3D environment. Built-in coupling capabilities take three forms.
Structural Element Coupling (1D)
One-dimensional FLAC3D structural elements such as beams, cables, and piles can now be linked to PFC3D balls, clumps, and rigid blocks in a similar manner to zone links in FLAC3D. The following illustrates a rigid block tetrahedral wedge, supported with FLAC3D cables, that falls away from other fixed blocks but is ultimately retained.
Interface Coupling (2D)
Couple PFC3D to zone faces and shell-based structural elements in pseudo-static simulations. PFC walls can be automatically created and slaved to FLAC3D zone faces or shell-based structural element faces. The motion of the wall vertices is slaved to that of the FLAC3D nodes, and forces exerted on the walls are transferred as externally applied forces (i.e., boundary conditions) to the FLAC3D nodes, resulting in an efficient two-way coupling. This functionality was first introduced in FLAC3D 6.
For example, below (left) is a staged-excavation tunnel model created and run in PFC3D 6 (left) that consists of FLAC3D zones and a portion of bonded particles. This is an elastic model. The bonded-particle micro-properties have been calibrated to match the mechanical properties of the FLAC3D zones (E = 40 MPa, v = 0.2). A smooth transition between the behavior of the zones and particles is clearly demonstrated. When comparing the coupled model (left) with the FLAC3D model (right), there is a good match between the response of two models. The tunnels in both models are lined with structural shell elements to represent ground support.
Product: Itasca PFC 6.0
Version: 6.0
Supported Architectures: x64
Language: english
Supported Operating Systems: Windows 7even or newer
Size: 1CD